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ABSTRACT
Channel information plays an important role in modern
wireless communication systems. Systems that use different
frequency bands for uplink and downlink communication of-
ten need feedback between devices to exchange band specific
channel information. The current state-of-the-art approach
proposes a way to predict the channel in the downlink based
on that of the observed uplink by identifying variables under-
lying the uplink channel. In this paper we present a solution
that greatly reduces the complexity of this task, and is even
applicable for single antenna devices. Our approach uses
a neural network trained on a standard channel model to
generate coarse estimates for the variables underlying the
channel. We then use a simple and efficient single antenna
optimization framework to get more accurate variable esti-
mates, which can be used for downlink channel prediction.
We implement our approach on software defined radios and
compare it to the state-of-the-art through experiments and
simulations. Results show that our approach reduces the time
complexity by at least an order of magnitude (10x), while
maintaining similar prediction quality.
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1 INTRODUCTION
In the last two decades, wireless technology has significantly
improved user throughput by exploring multi-antenna and
multi-user approaches. Very recently, there has been an in-
terest in developing base stations with hundreds of antennas
called mega MIMO (multiple input multiple output) systems
[16, 18, 19]. These systems can simultaneously talk to mul-
tiple clients that each have just a few antennas. For all of
these techniques, client or client set selection is critical for
performance. These selections, in turn, are based on the chan-
nel between the transmitting and receiving antennas across
multiple devices.
In application domains like cellular networks, a device

receives data in one frequency band, but transmits in another.
This is done in order to facilitate simultaneous transmissions
in both directions without the use of in-band full duplex
techniques. In such applications, the channel observed in
the receiving frequency band are different from those in
the transmitting frequency band. Therefore, a device can
not use the channel it observes in the receiving frequency
band to perform tasks like beamforming or rate selection
in the transmit frequency band. Traditionally, in cellular
systems, channel values are reported back to the base station
by the mobile clients, either with or without compression.
However, those approaches can be prohibitively expensive
or can compromise accuracy [4, 9, 23, 34, 36, 36].
A recently proposed approach, R2F2 [31], aims to elimi-

nate the aforementioned feedback overhead. It enables a base
station to derive channel values to a client in the downlink
(transmit) frequency band based on the channel it observes
from the client in the uplink (receive) frequency band. Their
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primary insight is that while the observed channel values be-
tween two devices are different in different frequency bands,
the physical signal paths underlying the channels remain
the same. Thus the channel can be modeled with a set of
frequency independent parameters (number of multipath
components, individual path lengths, power etc.), and a fre-
quency dependent parameter, which is the frequency band
of the signal itself. The goal of R2F2 is to estimate the fre-
quency independent parameters from the observed channel.
However, their algorithm can be computationally expensive,
depending on the number of channel components, and num-
ber of antennas on the device. This prevents R2F2 from being
used on devices with low computational power and/or single
antenna systems like personal or smart home devices.

While cross band channel estimation is already an impor-
tant issue in for base stations in large wireless networks,
we believe that it can be useful in many other domains. For
instance, most traffic in home Wi-Fi networks carries video
streaming data [27], which is on the downlink from the
Wi-Fi access point to the laptop. With such asymmetry in
traffic, one can envision protocols that use different bands
and bandwidths for uplink and downlink channels based
on the amount of data being transmitted in either direction.
In that case, laptops and access points may want to beam
data to each other but will need channel feedback. However,
laptops may not be able to use R2F2 as their antennas usually
don’t form a linear array, while an access point may not have
enough computational power.
Another application for cross band channel prediction is

in smart-home networks where a large number of devices
frequently transmit small packets of data. One can envision
a scenario where devices operate in a frequency agile man-
ner, changing transmission bands in order to avoid packet
collisions with other devices, or use bands with better SNRs.

Motivated by the limitations of the current state-of-the-art
and awide range of applications, we present OptML, a system
that leverages machine learning speed up processes involved
in channel prediction. OptML reduces the complexity of
channel prediction by orders of magnitude compared to R2F2,
and is capable of running on single antenna devices. It uses an
efficient optimization framework that matches the channel
prediction performance of R2F2 in most cases. It leverages
a light-weight machine learning (ML) model for generating
high quality initial guesses which are used to initialize the
optimization framework. Thus, our work is applicable to
devices like cellphones, laptops, and IoT nodes, which do not
have linear antenna arrays, and have lower computational
power.
We implement OptML on USRP radios and compare its

performance with R2F2 (current state-of-the-art) in an in-
door testbed and in simulations. Our evaluations show that
OptML provides beamforming gains similar to those of R2F2

for indoor and simulated environments, for various antenna
arrays sizes and multipath channels. Additionally, it is able
to do so orders of magnitude faster than R2F2. The contribu-
tions of our work are:

• We present a highly efficient and flexible framework
for channel prediction that can be used by base stations,
user end devices, and smart home devices alike.

• Results show that it is able to provide similar prediction
accuracy to the current state-of-the-art approach while
providing a speed up of up to 80x.

2 BACKGROUND
2.1 Channel Basics
When a device transmits a signal, the signal gets distorted
by the environment that it travels through. The signal un-
dergoes attenuation (a) due to path loss and absorption, and
phase changes due to the distance traveled (d) by it, as well
as reflections (ϕ). These changes are collectively referred to
as the “channel” which affects the signal. For a signal trans-
mitted at a frequency of fi (wavelength λi ), the channel, hi ,
can be expressed as [28]:

hi = ae
−j2πd
λi
+jϕ (1)

Often times, the signal observed at a receiver is a func-
tional composition of multiple copies of the original signal,
where each copy arrives with a slightly different delay, power,
and phase. In those cases, the is channel can be represented
as the sum of the channels caused be each path, and can be
represented as:

hi =
∑
n

ane
−j2πdn

λi
+jϕn (2)

As seen in Eq. 2, the channel depends on the individual
paths through which the signal travels, and the wavelength
of the signal itself. For a single antenna, a multipath chan-
nel can be described by a set of 3-tuples, {(di ,ai ,ϕi )}. For
an antenna array, the channel observed at antenna Ki , for
wavelength λ due to N signal paths can be expressed:

hKi ,λ =
N∑
n

(
ane

−j2πdn
λ +jϕn

)
e

−j2π ilcos (θn )
λ (3)

Note that the first term is the same as in Eq. 2. The second
term represents the effect of the additional distance the signal
travels to a specific antenna, as shown in Figure 1.

2.2 Primer on R2F2
R2F2[31] is the current state-of-the-art method that enables
a device with a linear antenna array to predict the channel
to a client in a frequency band F1 based on the channel it
observes from the client in a frequency band F2. Based on the
channel model described in Section 2.1 and Eq. 3, R2F2’s goal
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Figure 1: Channels induced by a single signal path at
two antennas.

is to identify a number of paths (N ) and the corresponding
4-tuple of parameters {(an ,dn ,ϕn ,θn)}Nn=0 that would induce
the channel observed in F1 at the antenna array. Once the
underlying parameters have been estimated, the channel in
any other frequency band can be computed.

R2F2 operates in two stages. The first stage generates a set
of initial guesses, and the second stage refines them in order
to fit the observed channel. To generate the initial guesses,
R2F2 computes a likelihood function, P(d,θ |h), which, given
the observed channel h, estimates the likelihood of a signal
from a distance d and an angle of arrival θ being a part
of the observed channel. It computes the value of P(d,θ |h)
over a range of values, similar to as shown in Figure 2. As
seen in Figure 2, multiple regions of the parameter space are
highlighted as likely components of the channel.
In the second stage, as the number of multipath compo-

nents is unknown, R2F2 uses the mostly likely pair (d,θ ) to
initialize an optimization. The optimization updates {(d,θ )}
to minimize the difference between the observed channel and
the channel induced by those estimates. If the optimization
minimizes the difference below some threshold, then R2F2
assumes that the correct set of {(d,θ )} has been estimated.
Otherwise, the next most likely pair of (d,θ ) is added to the
set of guesses used in the optimization process. This process
repeats itself until a good fit is achieved, or the improvement
per additional component is below some threshold.

2.3 Limitations of R2F2
While R2F2 can enable channel prediction across frequencies,
it is designed for base stations, which have a significant com-
putational resources and linear antenna arrays. This limits
the applicability of R2F2 to end-user devices. For example,
newer laptops can have up to three antennas, but are scat-
tered along different axes, around the screen and keyboard.
Due to the non-convexity of the objective function used

in their optimization, R2F2’s end result is sensitive to the
quality of the initial guesses. However, the process of gener-
ating initial guesses in R2F2 is prone to errors. To illustrate
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Figure 2: Initial guess generation: Actual channel
paths from (130m, ∼ 145◦) and (40m, ∼ 45◦) are high-
lighted in regions marked A and B. However, some
other incorrect regions of the parameter space are also
highlighted (C,D,E).

this, we generate a (simulated) channel with two multi-path
components, and plot the initial guesses for that channel as
described in [31]. In Figure 2, the x-axis represents distance,
and the y-axis represents the angle of arrival. The value at
a position represents the likelihood of a signal from that
distance and angle of arrival being a part of the observed
channel. The regions marked as B and A represent correct
guesses for the channel components. For the stronger compo-
nent (@130m and ∼ 145◦), the initialization method suggests
paths from multiple angles of arrival. Such “side-lobes” can
be stronger than other actual paths. For example, region A
is an actual component that has likelihood value lower than
or similar to regions C , D and E, which are side-lobes of B.
Under some conditions a grating lobe may also manifest (E),
which can have power comparable to the main lobe (B). This
ambiguity can lead R2F2 to either over estimate the number
of paths and incorrectly decomposing the channel, or waste
time exploring sub-optimal regions of the parameter space.

3 SCOPE AND CHALLENGES
Our goal is to enable channel prediction on devices with a
single antenna, non-linear antenna arrays, or devices with
low computational power. While performing channel predic-
tion independently at each antenna would provide a solution
for all those cases, certain challenges and limitations of such
a solution must be addressed.

3.1 Correctness of decomposition
In order to correctly decompose a channel observed on a
single antenna into its underlying set of 3-tuples, a unique
mapping or correspondence must exist between a set of 3-
tuples and a particular channel on a single antenna. However,
such a unique correspondence is not always guaranteed.



Figure 3: Eigen values of most significant principal
components of matrix D. As the bandwidth of the sig-
nal is increased, channels get measured on more inde-
pendent subcarriers, and the number of non-zero com-
ponents in the PCA increases.

To understand why, consider the following: Construct a
matrixD such thatDi,n = e−2jπdn/λi , wheredn ∈ {0 . . .dmax },
λi ∈ {λ0 . . . λNf f t }, and Nf f t represents the number of sub-
carriers in the transmitted signal. That is, each column of D
represents the channel for a signal that travels a distance dn .
One can then generate a large number of multipath channels
by picking different columns from D, and adding them in
different linear (scaled and rotated) combinations.

For example, consider a matrixD180 withd ∈ {1, 2 . . . 180},
and wavelengths (λ) corresponding to a 10MHz bandwidth
around the 2.4GHz center frequency. This matrix can be used
to generate channels that have multipath components with
lengths between 0m and 180m. Amultipath channelH which
uses the 10th and 75th columns of D can be generated as:

H = D ®a (4)
where ®a represents a complex valued vector in which the nth
element represents the attenuation and phase associatedwith
the channel in column n of D. In our example, only a10 and
a75 have non-zero values which represent the attenuation
and phase offsets for paths that travel 10m and 75m. While
®a and D180 can be constructed with smaller steps or higher
resolution, it is not useful to increase the resolution beyond
a certain point, as dictated by the signal bandwidth.

As a part of channel prediction, one would like to estimate
®a when H and D are given. One way to do so is:

®a = D+H (5)
where D+ represents the inverse of D.

However, Eq. 5 will have a unique solution only when D
is invertible. A principal component analysis of D180 reveals
that it is rank deficient and thus non-invertible. Figure 3 shows
the eigen values of the most significant components of D180,

and D60. It shows that D is rank deficient as number of non-
zero eigenvalues is less than number of columns inD, and the
determinant of D is zero, as the product of the eigenvalues
is zero. Thus a unique solution to the decomposition may not
always be possible. In other words, a channel measured at a
single antenna may not contain enough information to be
able to identify the correct underlying parameters.

One such example is shown in Figure 4. The channel rep-
resented by HA contains 10 multipath components, and HB
is a channel with 6 components. While the two sets of mul-
tipath components are very different, their corresponding
channels are very similar in the uplink frequency band. More
importantly, while the channels look the same in the uplink
band, they are very different in the downlink band. Thus, an
algorithm that tries to predict the downlink channel based
on a single uplink channel observation will fail in this case.

Figure 4: An example of two channels due to different
components that are similar in the uplink band, but
very different in the downlink band. A correct cross-
band prediction is not possible in this case.

In a multi-antenna system, the distances travelled by the
components to each antenna is slightly different, which re-
sults in linearly independent channels across the antennas.
This can enable a more accurate channel decomposition at
the cost of higher complexity.

While a correct decomposition may not be always feasible
from a single channel observation, if the matrix D is con-
structed carefully as a part of an optimization problem, as
later described in Section 4.2, then it is more likely that the
correct solution can be estimated.

3.2 Initialization and Resilience to Noise
This work focuses on single antenna systems and systems
with arbitrary antenna arrangements. As such we can not
rely on angular resolution to resolve components, or multiple
antennas to overcome low SNR. Thus we need a way to
generate high quality initial estimates despite the loss of
angular resolution and in cases with low SNR.
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Figure 5: Overview of OptML. A neural network model is used to generate coarse estimates of the lengths of the
multipath components in the observed channel. These estimates are then refined by an optimization process. The
refined components are then used to calculate the channel in another band.

4 SYSTEM DESIGN
In this section, we present our proposed system, OptML. As
shown in in Figure 5, OptML starts by generating estimates
of distances travelled by multipath components in a channel
(Section 4.1), and then uses an optimization process (Section
4.2) to refine them so that the channel based on the estimates
closely fits the observed channel. Once the optimization con-
verges, the final estimates are used to calculate the channel
in the downlink using Eq. 2. We also present an algorithm
for channel prediction on multi-antenna systems that do not
have linear antenna arrays.

4.1 Generating Initial Guesses
A simple way to generate coarse distance estimates (initial
guesses) is to compute the similarity of the observed channel
and channels associated with signals traveling different dis-
tances. For a channel h measured over I sub-carriers, let hi
represent the channel at wavelength λi . Then, the likelihood
of h containing a path from distance d can be computed as:

P(d |h) = | |
I∑
i

hie
j2πd/λi | |2 (6)

Eq. 6 computes to the similarity between hi and the chan-
nel induced at λi due to a multipath component that travels
a distance d , and sums it across all sub-carriers. The greater
the value, the higher the likelihood of the observed channel
containing a component from that distance.

Figure 6 shows the output of such a predictor for a channel
with multipath components that travelled 110m, 135m and
167m. The channel due to them is observed at two antennas
∼0.24m apart (approx. half wavelength, center frequency
650MHz and bandwidth 10MHz). We see that this predictor
generates significantly high peaks around the distances cor-
responding to these components. However it is unable to
distinguish between some paths. Typically, such a predictor

Figure 6: The basic predictor correctly identifies the
most significant component, but can not resolve other
components, and generates some false peaks/guesses.

can not resolve copies of signal that arrive within one sample
duration (Ts = 1

bw ), or when the difference in the distances
travelled by two components is less than cTs , where c is the
speed of light. We refer this distance as dsamp . Additionally,
this estimator generates peaks at distances that do not corre-
spond to any actual multipath component (false positives).
These false positives can lead to over estimating the num-
ber of multipath components and consequently an incorrect
channel prediction. These false positive peaks are akin to the
side lobes seen in the initialization method used by R2F2.

4.1.1 Neural Network Based Distance Estimator(NNDE). In
order to overcome the aforementioned issues, we propose
using a neural network to build a distance estimator. One
could consider this as a regression task where a channel
is the input, and the output is a vector that represents the
likelihood of multipath components from different distances
being a part of the channel. For example, if guesses need
to be generated for paths that can arrive from any distance
between 0 and 200 meters, then the output vector can be



of length 200 with each index corresponding to a particular
distance. However, this formulation has the following issues:

• Sparsity: As seen in Figure 6, the ideal output vector
(based on actual components) is sparse as only a few
non-zero values exist in the output vector. Sparse out-
puts can be difficult for neural networks to learn.

• Resolution: While the ideal predictor should be able
to generate accurate estimates for the distance of the
multipath components, a model’s ability to resolve two
close by components based on the channel is related
to the bandwidth over which the channel is observed.
A higher bandwidth provides greater resolution.

• Complexity of problem: As the number of multipath
distance combinations is extremely large, the task will
require an extremely large neural network.

While a target vectorwith greater sparsity allow for greater
resolution between multipath components, it significantly
increases the complexity of the machine learning model.

In order to overcome these issues we design the target out-
put for the neural network by convolving the ideal (sparse)
output with a Gaussian smoothing function as shown in
Figure 7. The extent of smoothing done by a Gaussian filter
depends on its σ (standard deviation) parameter. If the value
of σ is too low, then the output vector will remain sparse and
not be amenable to fitting by a neural network. Conversely,
if it is too high, then it may not provide any improvement
over the basic predictor. We identify a good value for σ as
follows: We first pick a value of σ that results in an output
vector with the same resolution as that of the basic predictor.
We then train a neural network with that value of σ and mea-
sure the quality of fit based on a loss metric (mean squared
error etc.). We keep reducing the value of σ and training new
networks until the fit of the neural network stops improving.
The smallest value of σ for which the neural networks is able
to learn a good fit is chosen as the final value of σ .

Gaussian smoothing filterOriginal sparse output vector

Smooth target vector

Figure 7: Output vector construction: Convolve the
sparse target vector with a Gaussian to get a non-
sparse target vector that the NNDE can fit more easily.

A fully connected feed forward neural network architec-
ture is used for building the Neural Network Distance Esti-
mator (NNDE). This choice is motivated by the small number
of parameter needed to define a network and the simplicity
of the model compared to more sophisticated neural network
architectures. We discuss the different parameters involved
in the NNDE design in Section 7. The input to the neural net-
work is the frequency domain representation of the channel
observed at a single antenna. A channel observed over Nf f t
subcarriers can be represented as a vector of Nf f t complex
numbers. A single channel can be fed to the neural network
as a vector of 2Nf f t real values numbers. The network then
outputs a vector that represents the likelihood of different
multipath components distances in the input channel.

Figure 8 shows the output of the NNDE for the same chan-
nel on which the basic predictor was tested. The peaks in the
output of the NNDE correspond to the most likely distances
for the channel components. It shows that the neural network
based predictor is able to generate high quality estimates
for the number of multipath components in a channel, their
distances and amplitudes. It is also able to clearly resolve
between components that are less than dsamp apart.

Figure 8: The NNDE correctly identifies components
and has no false positives for the same channel that
the basic estimator was tested on.

4.2 Optimization Formulation
While the NNDE gives us coarse estimates of the distances of
the channel components {dn}, they need to be refined before
they can be used for channel prediction. This is done through
an optimization. While the channel model for a single an-
tenna is described in terms of sets of 3-tuples, {(d,a,θ )}, we
show how the optimization can be framed in terms of only
{dn}. Firstly, within Eq. 2 the phase offset term, e−jϕn , can
be combined with the attenuation term, an , thus converting
an from a real valued variable to a complex variable. Fur-
thermore, given a set of distances {dn}, one can compute
its corresponding solution set {an} by using a least squares



method. Following the formulation in Section 3.1, let H rep-
resent the channel observed on a single antenna,D represent
a matrix of size IxN , where I is the number of subcarriers
in the signal and N is the number of multipath components
estimated by the NNDE, and ®a represents the complex at-
tenuation associated with each path. Then the relationship
between H , D and ®a can be represented as follows:

H = D ®a

For a known H and D, the value of ®a can be estimated
using a least squares approach, e.g. pseudo-inverse, in which
case ®a = D+H . Thus, {an} can be eliminated from the opti-
mization parameter space. This leaves {dn} as the only set of
variables that need to be estimated. Therefore the objective
function that needs to be optimized can be written as:

O({dn}Nn=1) = | |H − DD+H | | (7)

As noted in Section 3.2, the optimization needs to be re-
silient to noise, and should not try to fit to the noise. We note
that fitting noise often results in extremely large value in ®a.
We therefore use a regularization term (with a scaling α ) that
takes the amplitude into account, and rewrite the objective
function as:

O({dn}Nn=1) = | |H − DD+H | | + α
∑

|D+H | (8)

While this objective function is non-convex, just like the
one used in R2F2, it is a much simpler formulation. Addition-
ally, the initial guesses generated by the NNDE increases the
likelihood of the optimization finding a good solution.

4.3 Leveraging Multiple Antennas
Multi-antenna devices provide multiple independent chan-
nel observations which can be leveraged for getting better
guesses. This becomes more important as the number of
multipath components in the channel increases. As noted
in Section 3, it is difficult to correctly identify the multipath
components from the channel of a single antenna. Thus, if
the channel has a lot of multipath components, the NNDE
may not be able to generate good initial guesses.

Recall that multipath components travel similar distances
to all antennas in an antenna array. The extra distance trav-
elled by any component is based on the relative distances
between the antennas. For a linear antenna array, this dis-
tance is ilcos(θ ), as seen in Figure 1 and Eq. 3. In general, the
difference in the distance travelled by a single component to
two antennas is bounded by the separation between the two
antennas, i.e. δ ∈ [−l , l].
Consider a channel composed of two components from

distances d1 and d2. For clarity of explanation, we omit the
other parameters (a and ϕ) and limit the example to two
paths. However, the following analysis does not depend on

this simplification (refer Appendix A for proof). The chan-
nels induced by these components at wavelength λ at two
antennas, K1 and K2, separated by distance l are:

hK1 = e
−j2πd1

λ + e
−j2πd2

λ hK2 = e
−j2π (d1+δ1)

λ + e
−j2π (d2+δ2)

λ

where δ1,δ2 ∈ [−l , l] correspond to the difference in dis-
tance travelled for each path to antenna K2 compared to K1.
The term e

−j2π (d1+δ1)
λ can be treated as the product of e

−j2πd1
λ

and e
−j2πδ1

λ . Thus, if hK1 is multiplied by e
−j2πδ1

λ , and then
subtracted from hK2 , then the contribution of the signal com-
ponent due tod1 will be eliminated. As the result, the number
of components in the channel is reduced, and the NNDE can
use it to generate good component distance estimates.

However, in practice, the correct value of δ1 in not known,
and even if the exact value of δi is known, the multiplication-
subtraction operation introduces extra terms. In our example,
the suppression process will be as follows, with the extra
term written in bold:

Multiply : h′
K1
= hK1e

−j2πδ1
λ = e

−j2π (d1+δ1)
λ + e

−j2π (d2+δ1)
λ

Subtract : hsubtr = hK2 − h′
K1
= e

−j2π (d2+δ2)
λ −e

−j2π (d2+δ1)
λ−e

−j2π (d2+δ1)
λ−e

−j2π (d2+δ1)
λ

The analysis in Appendix A assumes that δi in unknown,
and shows that the extra terms do not change the channel
enough to affect the performance of the NNDE. The final
result from Appendix A is as follows:

hsubtr = hK2 − h′
K1
= 2jsin(π (δ − δ1)/λ) e

−2jπ
λ

(
d1+

δ1+δ
2

)
+ 2jsin(π (δ − δ2)/λ) e

−2jπ
λ

(
d2+

δ2+δ
2

)
(9)

The exponential terms in Equation 9 represents channel
components very similar to the original components, and
not some new or spurious component. More importantly, the
jsin() terms scale each exponential term. If the δ term is close
or equal to either δ1 or δ2, then the sin() term will be close
to zero and effectively suppress that channel component.
Since we know that δi ∈ [−l , l], one can sample values of δ
from within that range with the goal of suppressing different
components each time. Each suppressed channel is fed into
the NNDE to generate an output vector дsubtr , similar to that
seen in Figure 8. The final set of initial guesses is generated by
adding up the output vectors {дsubtr } for the inputs {hsubtr }
and detecting significant peaks in that vector.

4.4 Channel Prediction Algorithms
We now describe how the optimization and NNDE fit to-
gether for devices with single or multiple antennas. Table 1
contains a list of terms used in this section.



4.4.1 Single Antenna Devices. The algorithm for predicting
the channel using a single antennas is described in Algorithm
1. The algorithm starts by using the uplink channel, HU L ,
and the NNDE to generate initial guesses for the multipath
components (line 1). Peak detection is used on the output
of the NNDE to identify the most likely distances. We refer
to this set of initial guesses as {d}init . The initial guesses
can be used to initialize the objective function described
in Section 4.2. However, as the objective function is non-
convex, it is possible that the optimization can move far
form the region described by the initial guesses, and move
away from the optimal solution. This can happen if the point
described by the initial guesses is at a cusp. For that reason,
we restrict the optimization to a region close to the initial
guesses. This has the added benefit of limiting the search
space, and making a more exhaustive search also possible.
In our implementation, the initial guesses {d1,d2, ...} are
replaced with bounded variables {(d1 ± b), (d2 ± b), ...}, or
{d}bounded (line 2). A differential evolution algorithm is used
to find the best solution within the region described by these
bounds (line 3). Once the solution {d1,d2, ...}f inal with the
least error has been identified, the corresponding ®a term is
computed (lines 4-5). Finally, the channel in the downlink
frequency band is constructed (line 6-7).

Algorithm 1 Single Antenna Channel Prediction
Input: NNDE , λU L , λDL , HU L , b
Output: HDL
1: {d}init = NNDE(HU L)
2: {d}bounded = дet_bounded({d}init ,b)
3: {d}f inal , error = Optimize(HU L, {d}bounded )
4: DU L = дet_matrix({d}f inal , λU L)
5: ®a = D+U LHU L
6: DDL = дet_matrix({d}f inal , λDL)
7: HDL = DDL ®a

4.4.2 Multi-Antenna Devices. For a multi-antenna device,
the channels measured over K antennas HU L,K , is used to
generate the set of initial guesses, {dn}init , based on the
process described in Section 4.3 (line 1). These initial guesses

Term Definition
K Number of Antennas
λU L Uplink (UL) subcarrier wavelengths
λDL Downlink (DL) subcarriers wavelengths
b Bound use to limit optimization region
{d} Path lengths for channel components
HU L,K ,HDL,K Channel matrix over K antennas
DU L,DDL Matrix as described in Section 3.1

Table 1: Table of notations

are bounded and used to find the best solution for each
antenna independently based on the channelHU L,k observed
at that antenna k (lines 2-5). The error for each solution is
compared across all antennas, and the antenna and solution
corresponding to the least error are noted asKr ef and {d}r ef
(lines 6-12). In the final stage of the algorithm, {d}r ef is used
to initialize the optimization problem at all other antennas.
However, this time the bounds are set to bemuch tighter than
before. The bounds are based on the distances between Kr ef
and the antenna for which the optimization is being solved,
k . That is, if the distance between antenna k and Kr ef is l ,
then the final optimization at antenna k is restricted to the
region described by {d±l}r ef (lines 14-16). The optimizations
are once again solved independently at each antenna which
identify the final set of distances {d}f inal for each antenna.
The corresponding set of ®a are found for each antenna (lines
17-18). Finally, the channel at antenna k in the downlink
band is calculated (line 19-20).

Algorithm 2Multi-antenna Channel Prediction
Input: NNDE , K , λU L , λDL , HU L,K , b
Output: HDL,K
1: {dinit } = NNDE_Subtr_Guesses(HU L,K )
2: {dbounded } = Update({dinit },b)
3: {d}r ef = ∅, errormin = ∞, Kr ef = 0, k = 0
4: while k < K do
5: {d}, error = Optimize(HU L,k , {d}bounded )
6: if error < errormin then
7: errormin = error
8: {d}r ef = {d}
9: Kr ef = k
10: end if
11: k = k + 1
12: end while
13: while k < K do
14: l = Separation(k,Kr ef )
15: {d}bounded = Update({d}r ef , l)
16: {d}f inal , error = Optimize(HU L,k , {d}bounded )
17: DU L,k = дet_matrix({d}f inal , λU L)
18: ®a = D+U L,kHU L,k

19: DDL,k = дet_matrix({d}f inal , λDL)
20: HDL,k = DDL,k ®a
21: end while

4.5 Generating Sufficient Training Data
The variables for generating the NNDE training data are:

• RF parameters: center frequency and bandwidth
• Maximum number of multipath components, Nmax
• Component distances, d ∈ [dmin ,dmax ]
• Attenuation, a ∈ (0, 1]



• Phase rotation, ϕ ∈ [−π ,π ]
While the RF parameters can be fixed for a certain appli-

cation, and most variables have a small range, the range of
distances travelled by each components can be quite large.
This presents an issue for generating an extensive dataset, as
it increases the number of multipaths possible, and therefore
the training dataset size.
However, we note that the range for d can be reduced

to the maximum delay spread of the environment by using
a channel modification process similar to the one used in
Section 4.3. Specifically consider an NNDE model trained
to identify components in the range of [0m, 200m], and a
channel that contains components that travel d1=1250m and
d2=1300m. Let h represent the channel, where:

h = a1e
−j2πd1
λi + a2e

−j2πd2
λi

To change the channel into something the NNDE has trained
on, we first define a shifting vector as follows:

hshif t = e
j2πdshif t

λi

Note the positive exponent term. The term dshif t represents
a distance value that can be subtracted from d1 and d2 to
bring both of them into the range[0,200]. Let us set dshif t
to 1200. We then multiply the channel h with the shifting
vector as follows:

h′ = h e
j2πdshif t

λ = a1e
−j2π (d1−dshif t )

λ + a2e
−j2π (d2−dshif t )

λ

= a1e
−j2πd′1

λ + a2e
−j2πd′2

λ

Where d ′
1 and d

′
2 will be equal to 50m and 100m in our ex-

ample. This channel can now be fed into the NNDE to get
distance estimates. Once the estimates have been generated,
dshif t can be added to the estimates to get the actual distance
values that will be used by the optimization algorithm.

A good value for dshif t can be estimated from the chan-
nel’s impulse response. The impulse response of a channel
measured in the frequency domain can be computed through
its IFFT. Figure 9 shows the impulse response of our example
channel (d1=1250m, d2=1300m, 10MHz bandwidth). The plot
on top shows the IFFT of the channel while the lower one
shows the region around the peak. The bin index of the peak
can be used to get a coarse estimate of the distance. For a
signal with a bandwidth of 10MHz, each bin corresponds to a
distance of 30m (c/BW). Based on the significantly non-zero
value in the 40th bin, we get an estimate of 1200m for dshif t .

This process allows us to limit the training to the NNDE
to the delay spread and not the maximum communication
range of the network. As the delay spread can be an order
of magnitude smaller than communication ranges [8], this
greatly reduces the amount of data needed to be generated.

Figure 9: The location of the peak in the channel im-
pulse response provides a coarse estimate of dshif t .

5 EXPERIMENTS AND SIMULATIONS
We implemented OptML and R2F2 using the USRPN210s soft-
ware defined radio platform. We implemented a 3-antenna
base station and a single antenna client that are synchro-
nized via an external clock. Experiments were conducted in
a large indoor lab space (Figure 10). The uplink and downlink
frequencies are separated by 30 MHz and have a bandwidth
of 10MHz. We used the 2.4GHz ISM band in our experiments
as it allowed for license free operation. While this frequency
band is different from the one used in [31], it does not affect
the performance of either algorithm. We also run simula-
tions in the same cellular network frequency band used in
[31]. The NNDE is implemented using Keras [5], and the op-
timization in Python [12, 32]. The NNDE used in this paper
is composed of 10 hidden layers, each with 200 neurons with
the Exponential Linear Unit (ELU) activation function. The
model was trained on 1.5 million data points, each of which
represents a channel and target vector. The training chan-
nels were generated with varying SNR and up to 6 multipath
components. We limit the number of multipath components
to 6 based on the discussion in Section 3. The trained model
takes less than 6MB of disk space.

5.1 Beamforming results
Beamforming is one of the most common use cases of chan-
nel values in MIMO systems. For that reason, we evaluate the
performance of our system by using the predicted channels
to beamform to a client from the base station. We measure
the SNR of the signal at the receiver when beamforming
is done using the actual channels in that frequency band,
channels predicted by OptML and R2F2, as well as when no
beamforming is done. We refer to the transmit beamforming
done by using the actual/ground truth channels in the down-
link band as the “optimal” beamforming. Figure 10 shows
the layout of the room used for this experiment. While we



Figure 10: Layout of the indoor lab space used for ex-
periments. The red star represents the location of the
base station, while the blue dots represent some of the
locations for the client node.

collected data more densely throughout the room, only a few
locations have been highlighted as examples for clarity.
Figure 11 shows the beamforming performance of R2F2

and OptML in the indoor testbed. We see that the perfor-
mance of OptML closely follows that of R2F2, and is within
1dB of the optimal beamforming performance. We also see
that the median gain over no beamforming is approximately
4dB, which is close to the theoretical maximum for a 3-
antenna transmitter.

Figure 11: Beamforming gains (indoor testbed): The
beamforming gains from channels predicted by
OptML are similar to those of R2F2, and is within 1dB
of the optimal performance based on the actual down-
link channels.

We perform simulations in order to test the performance
of OptML in environments where we can increase the de-
lay spread, and finely control the multipath. A testbed with
the same parameters used in [31] is simulated, where each
component can travel distances between [0m, 200m]. The
attenuations a ∈ (0, 1], angles of arrival θ and phase offsets
ϕ ∈ [−π ,π ] are chosen uniformly at random from within
their respective ranges. Simulations are done with different
number of antennas in the array (3-10 antennas), with the
inter antenna separation set to half the wavelength of the

uplink frequency. The uplink and downlink frequencies are
650MHz and 680MHz, respectively. The bandwidth is set to
10MHz in each band. The maximum number of components
is 6, based on the discussion in Section 3.
Figure 12 shows the CDF of the beamforming gains for

OptML and R2F2 for channels with up to 6 multipath com-
ponents for a base station with different number of antennas
(K). It shows that the beamforming gains of OptML match
those of R2F2 for all antenna arrays tested. Also, the gains
increase as the number of antennas in the array increase,
which is in line with the expected theoretical gains.

Figure 12: Beamforming gain (simulations): For an-
tenna arrays of different sizes (K) with channel with
up to 6 multipath components.

Figure 13 shows a breakdown of how each approach per-
forms for different number of multipath components and
antennas. When the channel contains fewer components,
OptML performs almost optimally. However, as the number
of components increase, the performance of both R2F2 and
OptML degrades. R2F2 is able to perform slightly better as it
can resolve components with similar distances in the angular
domain, while OptML can not.

In addition to matching the performance of R2F2 in most
cases, a major advantage of OptML is its low computational
complexity, which is detailed in the following section.

5.2 Run time
One of our main goals in designing OptML was to reduce
the time taken to generate a channel prediction so that the
system is more suitable for machines with limited compu-
tational power. Figure 14 shows the run time distribution
for OptML and R2F2 from experiments in the indoor testbed.
It shows that OptML provides ∼8x reduction in runtime,
which includes time taken to generate initial guesses and the
optimization stage for both approaches.

In order to study the performance of both systems in more
challenging conditions, we ran extensive simulations with
the same parameters as earlier. Figure 15 shows the runtimes
of OptML and R2F2 for the 3-antenna base station setup.



(a) Beamforming with a 3 antenna base station (b) Beamforming with a 5 antenna base station (c) Beamforming with a 10 antenna base station

Figure 13: Beamforming(simulation): OptML and R2F2 closely follow the optimal beamforming performance for
all array sizes when the number of multipath components is low. Even when the number of components increase,
they provide significant gains over the baseline.

Figure 14: Runtimes (indoor testbed). OptML shows
an order of magnitude reduction in the median time
taken to generate a prediction compared to R2F2.

It shows that for a single component channel, OptML pro-
vides a 10x speedup. For more complex channels with 4 com-
ponents, it provides a 50x speedup over R2F2. This factor
increases as the number of antennas and multipath com-
ponents increase (up to 80x for a 10-antenna system). The
reason R2F2 takes this long is partially because its method
for generating initial guesses produces a lot of false posi-
tives, which results in it exploring sub-optimal regions of
the parameter space. In contrast, the NNDE is less likely to
generate false positives.

Figure 16 shows a breakdown of the runtimes of OptML and
R2F2 for various antenna array sizes and number of multi-
path components. Each point represents the median runtime
for an approach for a channel with a certain number of multi-
path components, and a fixed number of antennas. In general,
we see that both approach take longer to generate a predic-
tion as the number of multipath components increases, or as
the number of antennas increases. However, in all cases, the
median runtime of OptML is much lower than that of R2F2.
In fact, the speedup is higher when the number of multipath
components or number of antennas increases.

Figure 15: Run times (simulations) for a 3 antenna sys-
tem. The runtime gain of OptML over R2F2 increases
with the number of multipath components.

The increase in R2F2’s runtime as the number of com-
ponents increases is partially due to its iterative design. It
starts off by assuming the observed channel can be fit using
one component, and then increases that number if the op-
timization can not find a good fit with the current number
of components. As a result, it has to run for much longer
before it ends up using enough components to fit the ob-
served channel. In contrast, OptML uses all the components
suggested by the NNDE to model the channel at once, and as
the NNDE is less likely to generate false positives, the search
space of the optimization is not unnecessarily increased.

5.3 Estimating Number of Components
In this section we compare the number of components in the
channel to the number estimated by OptML and R2F2. We
do so by simulating channels with known number of compo-
nents under the same conditions as described in Section 5.1,
and then using OptML and R2F2 to estimate the number of
components in the channel. However, it should be noted that
such a comparison comes with a caveat. Specifically, that
though a channel may have N components, some of them



Figure 16: Speedup: The median runtime of both
approaches increases as the number of multipath
components increase. However, the runtime for
OptML grows more slowly compared to R2F2.

Figure 17: Actual vs estimated number of components:
R2F2 has a tendency of over estimating the num-
ber of components, even when the channel has only
one component. OptML generates more accurate esti-
mates when the channel has fewer components.

may have very low amplitude. In those cases, the channel can
be modeled very accurately with fewer than N components.
Thus, estimating fewer than the actual number of components
is less harmful to a prediction than over-estimating the number
of components.
With that caveat in mind, we use box-plots in Figure 17

to compare the actual and estimated number of components
by each approach. The actual number of components are
marked on the x-axis, and the estimates are along the Y
axis. The median is drawn in orange within the box, and
the whiskers represent the 5th and 95th percentiles. Outliers
are plotted as circles, where darker circles represent multi-
ple outliers at that point. The figure shows that R2F2 has a
tendency of overestimating the number of components, espe-
cially when the number of components are low. In contrast,
the NNDE used in OptML provides more accurate guesses
when the number of actual components are low. This is
because when fewer components are in the channel, the

channels due to each individual component is more likely to
be independent or dissimilar. As the number of components
increases, the probability of two components traveling simi-
lar distances increases. This becomes an issue for the NNDE
as it can not leverage angular resolution to separate them.
However, as seen from the results in Section 5.1, OptML’s
performance does not degrade a lot. This reinforces our in-
tuition about under estimating the number of components
being less harmful than over estimating them.

5.4 Single Antenna Evaluations
In this section we evaluate the performance of OptML for
a single antenna device. Consider a scenario where devices
in a smart home can transmit in one of many bands, similar
to the 11 bands or channels in WiFi at 2.4GHz. Under this
setup, a device may choose to a particular transmission band
based on whether it is free of interference, or its SNR. In this
scenario, a device can use OptML and a single beacon from
the AP in any band to estimate channel in any other band.

Figure 18: Channel values predicted in ±30MHz band
around input channel band by a single antenna device
using OptML. The actual channel values are in blue,
the predicted in orange, and the input channel band is
plotted in green.

We use simulations to test OptML in such a scenario. For
this test, we measure the channel in a 10MHz band and
predict it in the ±30MHz band around the measured channel.
The same parameters as the previous simulations are used
here. A sample prediction by OptML for a multitap channel
is shown in Figure 18.

To get an broader view of the quality of the predictions, the
correlation of the predicted and actual channel’s amplitude
is measured and its distribution is shown in Figure 19. As a
baseline, we compute the correlation between a flat channel
and the actual channel over the 70MHz. The median corre-
lation between the actual channel and the baseline is zero,



Figure 19: Correlation of the amplitude of the actual
channel with channel predicted by OptML, and flat
channel. While the flat channel has a median correla-
tion of zero, the predictions of OptML have very high
correlation with the actual channels.

while that of OptML is close to 0.7. Thus OptML can provide
useful guidance for band selection. Since OptML provides
the full CSI within each band, and not just a mean SNR value
for the band, it can also be used to perform power allocation
across the subcarriers.

6 RELATEDWORK
As comparisons between OptML and R2F2 have been done
throughout the paper, this section covers other related work.

6.1 Cross Band Channel Prediction
The problem of dealing with the overhead of channel feed-
back has also been addressed in ways compress or reduce
the amount of feedback needed [7, 13]. The clear advantage
of our approach over such techniques is the complete elimi-
nation of the feedback overhead. The authors of [26] address
the issue of feedback in 60GHz systems by using the channel
in 2.4GHz to help select the analog beamforming code in
60GHz. The approach works by using the Wi-Fi channel to
localize the client, and then picking a code from a mmWave
beamforming codebook which will point a 60HGz beam in
the direction of the client. While this approach does pro-
vide cross frequency band guidance for beamforming, it only
works for line-of-sight channel scenarios.

In [1, 20, 25], the authors propose deep learning frame-
works for channel prediction. These approaches differ from
OptML as they use neural networks to learn an end-to-end
prediction between the uplink and downlink channel. That
is, the output of the neural network is the channel in the
target frequency band, as opposed to estimates of the multi-
path components. While such systems can further reduce the
time required to generate a prediction, the size of the neural
networks used are much larger. Additionally, these models
were evaluated on different channel models (VehA, SUI-5,

3GPP) to the one considered here. Those channel models
often have a dominant path (LoS or NLoS) or have well sep-
arated components which makes channel prediction easier,
as a unique mapping is more likely to exist.

6.2 Machine Learning in Wireless
Networks

There has been considerable work in the application of ma-
chine learning to wireless networks [11, 21, 38]. In [38], the
authors explore the use of deep neural networks for estimat-
ing the signal detection and decoding. In [21], the goal is to
use support vector machines to estimate the linear and non-
linear components of the channel from the signal in order to
improve the BER. However, these approaches are aimed at
estimating the in-band channel, and not predicting the chan-
nel across different frequency bands. There has been a lot of
work in the application of ML techniques to predict channel
occupancy in the TV white-space [3, 10, 29]. While one could
try to predict the channel in the downlink over time based
on previous downlink or uplink channel information, most
existing work does not predict full CSI information, and is
limited to coarse SNR or occupancy information.

The task of the NNDE can be thought of as a 1-dimensional
deconvolution of the channel into its constituent compo-
nents. While a lot of work exists on convolutional neural
networks (CNNs) [33, 37] that can be used to improve the
NNDE, the goal of this paper is to show how neural networks
can be used to detect multipath components.

6.3 Super-resolution and Localization
As a part of OptML, we present the NNDE which can provide
some form of super-resolution or component localization.
Indoor localization is a well-studied problem that often deals
with multipath and super-resolution [14, 15, 22, 24, 35]. How-
ever, most systems require an array of antennas on a device
for them to work [14, 24, 30], or require cooperation between
multiple devices in order to localize the target[35]. As our
goal is to build a system that can work with even a single
antenna, we can not use those approaches for our problem.
Most localization work focuses on line-of-sight scenarios
where the goal is to get very accurate estimates of the time-
of-flight of the signal to multiple nodes or antennas. While
OptML could be used to facilitate localization, we consider
such an application as out of the scope of this work.

7 DISCUSSION
7.1 NNDE: Architecture
For the purposes of this work, we used a fully connected neu-
ral network architecture for the NNDE. As noted earlier, this
choice is motivated by the small number of hyper parameters



compared to a convolutional neural network or other more
sophisticated architectures. The number of neurons per layer
and number of layers are the primary hyper parameters for
this architecture, and need to be estimated through trial and
error, or a grid search. The problem of finding the correct
hyper parameters for a neural network is a research problem
in itself [2, 6, 17]. However, as this search is done before the
model is deployed to the device, its cost does not affect the
runtime of the system.

7.2 NNDE: Performance Variables
We now discuss the variables that affect the accuracy of the
estimates generated by the NNDE.

Signal bandwidth or sampling rate: Sampling rate has
a direct relationship with the ability of a device to resolve
two signals arriving at slightly different times. In general,
as the sampling rate increases, two components can be sep-
arated more finely in the time domain. The analog in the
frequency domain is that increasing the bandwidth increases
the range of frequencies over which the signal is observed,
which provides more independent observations for how the
two signal components are adding up. This can also be seen
in Figure 3 where, for a given delay spread, the number of
non-zero eigenvalues (matrix rank) increases with the signal
bandwidth. With more independent observations, we can
resolve the two components more accurately.

Delay spread of channels: The delay spread of the chan-
nel represents the difference between the shortest and longest
path length in the channel. In other words, it represents the
range of distances that a signal may travel to reach the re-
ceiver. This in turn corresponds to the size of the input and
output space for the neural network in the NNDE. That is, if
the delay spread is increased, then the number of possible
channels (input space) increases, and the length of the target
vector (output space) also increases. The size of the input and
output space affects the size of the neural network needed
to learn the mapping between them, and the amount of data
needed for training the network. The larger the input and
output space, the larger the neural network needs to be to
learn the mapping, and the larger the training dataset needs
to be to train it.

Gaussian filter: The standard deviation of the Gaussian
filter σ controls the sparsity of the target or output vector
for the NNDE. The sparsity of the output, in addition to
the signal bandwidth, controls the ability of the NNDE to
resolve to channel components with similar path lengths. As
noted in Section 4.1.1, σ needs to be chosen carefully so as
to provide greater resolution, while still allowing the NNDE
to fit a good model.

Number of components: In our experiments, we limit
the number of components to 6 based on the discussion
in Section 3.1, and our evaluation parameters (bandwidth

and maximum delay spread). The ability of the NNDE to
resolve components depends on the sampling rate. If more
components are packed into the a small delay spread, then
the components can not be resolved unless the bandwidth
or sampling rate of the signal is increased.

While the effects of each variable is easier to understand,
there is also some important interplay between these vari-
ables. In particular, larger delay spreads can introduce spar-
sity issues for the output vector if the Gaussian filter is not
chosen correctly. The target vector can become sparse when
the length of the target vector is increased due to the larger
delay spread, and the Gaussian filter is kept small or narrow
in order to provide greater resolution. In such cases, even if
the bandwidth of the signal is high enough to resolve com-
ponents from similar distances, the NNDE may not be able
to learn an accurate model.

7.3 Hardware Based Channel Asymmetry
The channel observed at a device can also be affected by
imperfections in the hardware of the transmitter and receiver.
For example, band-pass filters have non-ideal characteristics
at the edges of their pass band. These imperfections can be
considered as the baseband channel, and can cause problems
in channel prediction. While accounting for the baseband
channel is outside the scope of our work, a possible solution
to this is to construct a database which contains baseband
channel information for each transmitter in the network.
This information can be used to account for the baseband
channel in the channel estimation step before prediction.

8 CONCLUSION
This paper presents an efficient and flexible way to predict
channels across frequency bands that can be used by devices
with a wide range of antenna arrangements and computa-
tional power, ranging from cellphones and laptops to smart
home IoT devices. We evaluated and compared OptML to
the current state-of-the-art approach through experiments
and extensive simulations. The proposed technique is able
to match the performance of the current state-of-the-art ap-
proach for beamforming in most cases, while providing a
order of magnitude reduction in runtime (10-100x) and com-
plexity. To our knowledge, this is the first paper that applies
machine learning to the problem of estimating component
distances in a multipath rich channel. Given the flexible na-
ture of the approach, single antenna operation, and low com-
plexity, we envision this approach being extremely useful in
next generation networks.
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Appendix A CHANNEL SUBTRACTION
Recall that the channel at two antennasK1 andK2 are defined
as:

hK1 = e
−j2πd1

λ + e
−j2πd2

λ ,hK2 = e
−j2π (d1+δ1)

λ + e
−j2π (d2+δ2)

λ

In the following analysis we work under the condition where
the ideal value of δ is unknown. We pick a random δ for h′

K1
as:

h′
K1
= hK1e

−j2πδ
λ = e

−j2π (d1+δ )
λ + e

−j2π (d2+δ )
λ

We make the following substitutions for brevity:

a′1 =
−2π (d1 + δ )

λ
b ′1 =

−2π (d2 + δ )
λ

a2 =
−2π (d1 + δ1)

λ
b2 =

−2π (d2 + δ2)
λ

and rewrite h′
K1

and hK2 as:
h′
K1
= e ja

′
1 + e jb

′
1 , hK2 = e ja2 + e jb2

Upon using Euler’s formula we get:
h′
K1
= cos(a′1) + jsin(a′1) + cos(b ′1) + jsin(b ′1)

hK2 = cos(a2) + jsin(a2) + cos(b2) + jsin(b2)
We now subtract h′

K1
from hK2 :

hK2 − h′
K1
= cos(a2) − cos(a′1) + jsin(a2) − jsin(a′1)
+ cos(b2) − cos(b ′1) + jsin(b2) − jsin(b ′1)

After applying the sum-to-product identities, simplifying,
and re-applying Euler’s formula, we get,

= 2jsin
(
a2 − a′1

2

)
e
a2+a′1

2 + 2jsin
(
b2 − b ′1

2

)
e
b2+b′1

2

After replacing a′1,a2,b
′
1,b2 with the initial values, and

simplifying, we get:

hsubtr = hK2 − h′
K1
= 2jsin(π (δ − δ1)/λ) e

−2jπ
λ

(
d1+

δ1+δ
2

)
+ 2jsin(π (δ − δ2)/λ) e

−2jπ
λ

(
d2+

δ2+δ
2

)
(10)

Note that the variables for different paths are not combined
with each other in any stage, and are treated independently
at every step. The combinations happen between terms cor-
responding to the same paths at different antennas (a′1 with
a2, b ′1 with b2). Thus the analysis holds for any number of
paths in the channel.
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