
Semi-Supervised Community Detection Using
Structure and Size

Arjun Bakshi, Srinivasan Parthasarathy, Kannan Srinivasan
Department of Computer Science and Engineering

The Ohio State University
Columbus, USA

{bakshi.11, parthasarathy.2, srinivasan.115}@osu.edu

Abstract—In recent years there have been a few semi-
supervised community detection approaches that use community
membership information, or node metadata to improve their
performance. However, communities have always been thought of
as clique-like structures, while the idea of finding and leveraging
other patterns in communities is relatively unexplored. Online
social networks provide a corpus of real communities in large
graphs which can be used to understand dataset specific com-
munity patterns. In this paper, we design a way to represent
communities concisely in an easy to compute feature space. We
design an efficient community detection algorithm that uses size
and structural information of communities from a training set
to find communities in the rest of the graph. We show that our
approach achieves 10% higher F1 scores on average compared to
several other methods on large real-world graph datasets, even
when the training set is small.

Index Terms—community detection;semi-supervised;

I. INTRODUCTION

Community detection can be informally described as a
problem of finding subgraphs in a large graph where the
connectivity of nodes within the subgraphs differs significantly
from those outside them. Most approaches for community
detection use metrics like modularity at their core, which
are borrowed from social network analysis [1]. Such algo-
rithms work by finding subgraphs that have high modularity.
Some semi-supervised approaches incorporate sparse or partial
information about communities into the detection process,
while still trying to maximize modularity. However, a recent
study by Fortunato et al. shows that techniques that leverage
modularity tend to perform poorly on real world graphs where
communities are defined on latent variables or node metadata,
rather than the cohesiveness of nodes in the graph [2].

Online social networks allow us to collect node metadata
and real communities in large graphs. Although some work has
been done in incorporating metadata into community detection
[3], the idea of leveraging a sample of known communities is
relatively unexplored, despite many such datasets [4]. Further-
more, in some cases only the graph’s structure is observable,
and metadata is not. Therefore, in this paper we focus on cases
where metadata is not available but some communities in
the graph are known.

Given a graph and a small set of known communities
in the graph, our goal is to extract more communities that
have similar characteristics as the known communities. To do

that, the following challenges must be addressed: How can
one characterize the information embedded in the sample of
known communities? Subsequently, how does one incorporate
these characteristics into a community detection algorithm?
We hypothesize that there is significant information embedded
in the size and structural composition of communities that
can improve community detection. Our analysis of graphs with
known communities for 5 real world graph datasets supports
these hypotheses, and is presented in Section II and III.

Motivated by these ideas, we present Bespoke, a “custom-
fit” semi-supervised community detection algorithm. Bespoke
models structural composition of known communities by
computing fingerprints based on the structural features of the
nodes and edges in them. It then extracts patterns in size
and structural composition across the known communities, and
uses them to search for similar structures (communities) over
the complete graph.

II. MOTIVATION

A. Patterns in Size

We use five graph datasets with known communities avail-
able on SNAP [4]. The details of the datasets used are
presented in Table I. Figure 1 plots (a portion of) the size
distributions of communities in the different datasets. While
the general trend of smaller communities being more likely is
clear, some datasets lean more towards smaller communities
than others. For example, communities with 20 or more
nodes form only ∼5% of all communities in DBLP, while
for Facebook that number is ∼30%. These size variations
motivate the idea of extracting communities that follow
the size distribution of the communities in a training set.
The intuition is that if communities tend to be in a certain
range of sizes, then extracting communities that are much
larger or smaller than those sizes will result in either low
precision, or low recall with respect to real communities.
Finally, although a training set may not model the entire
community size distribution, (as can be the case with power-
law distributions) it can still provide a good estimate within
some bounded interval.

B. Patterns in Structural Composition

The idea of assigning roles/labels to nodes based on struc-
tural properties has been of recent interest [5]. Each node in



Dataset Nodes Edges Comms
Amazon co-purchase 334,863 925,872 5,000
DBLP co-authorship 317,080 1,049,866 5,000
YouTube (YT) 1,134,890 2,987,624 5,000
Twitter (TW) 81,306 1,768,149 3,662
Facebook (FB) 4,039 88,234 191

TABLE I
DETAILS OF GRAPH DATASETS.

0 10 20 30 40 50
Community Size

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Facebook
Twitter
Youtube
Amazon
DBLP

Fig. 1. Distribution of community sizes across datasets. DBLP generally has
smaller communities compared to Facebook.

a graph fulfills a role in it, and the semantic meanings of
the roles depend on the graph’s domain. We build upon this
idea and suggest that a community can be characterized
by the types and distribution of roles in it, and the
connections between them. Furthermore, if a clear pattern in
the connections between roles is observed inside the training
communities, then it can be leveraged to identify communities
in the rest of the graph.

III. PRELIMINARIES

A. Modeling Structural Information

Consider a graph with labeled nodes, and a community in
it. Our goal is to concisely represent information about the
community structure, or its constituent nodes and edges.

Figure 2 shows an example of how we represent a commu-
nity using labeled edges. An edge is labeled using the labels
of the nodes that it connects. That is, an edge that connects
nodes ni and nj with labels A and B respectively, is labeled
as (A,B). First, we use the nodes in a training community
to induce a subgraph. We then compute a probability distri-
bution of the labeled edges in the induced subgraph. We
refer to this distribution as a community’s feature vector or
its features.

A A

A
A

B
B B

Edge AA AB AC BB BC CC

# 2 7 0 1 0 0

Edge AA AB AC BB BC CC

# 0.2 0.7 0.0 0.1 0.0 0.0

Fig. 2. Generating the feature vector of a community. The community’s
induced subgraph is drawn with solid lines, and edges to the rest of the
graph with dashed lines. Although the graph has 3 possible node labels, the
community contains nodes with only 2 of those. The probability distribution of
the edge types in the community is used as a feature vector of the community.

The intuition behind creating a feature vector based on
edges instead of nodes is the following: Consider a node set
with n labeled nodes. The number of different possible graphs
that one can construct on this node-set is vast (O(2

nC2)).
However, by putting constraints on how many edges can be
induced between nodes with certain labels, that number can
be greatly reduced. Therefore, for a given labeled graph, an
edge based representation can more closely (though not
uniquely) represent the structure of the graph compared
to a node based representation.

B. Node Labeling

Although existing methods can be used for labeling
nodes [5], we compute labels based on coarser local topo-
logical features in favor of lower time complexity. We first
compute the Jaccard similarity of a node’s neighborhood to
that of each of its neighbors’. The similarity of two nodes is
the number of neighbors they have in common divided by the
total number of unique neighbors. This results in a distribution
of Jaccard similarity scores for each node. A node with n
neighbors will have n Jaccard similarity scores associated
with it; one for each neighbor. This distribution captures the
connectedness of a node with its neighbors. We compress
this distribution into a feature vector for a node by using its
0th, 25th, 50th, 75th and 100th percentile scores.

We choose this representation as it models the connect-
edness of nodes in an ego-net. For example, a node in a
clique will have a very high value in the the 100th percentile
column. This is because all of its neighbors have the same
neighborhood, leading to a distribution of very high (∼1.0)
Jaccard similarity scores. Similarly, the 100th percentile value
for a node that is mostly disconnected from its second order
neighbors will be low.

The nodes are then clustered and labeled using K-Means
clustering (K=Nl, number of labels). Based on the case studies
in [5], the typical number of roles in most networks ranges
between 3 and 5. For this reason, all of our analysis and
experimental results use Nl = 4.

C. Patterns in Communities

We now compare the patterns seen in community subgraphs
and random subgraphs using the aforementioned feature space.
The number of node labels is set to 4 resulting in a feature
vector of length 10. To generate a random subgraph, we pick
a node at random and expand in a breadth-first fashion till
T unique nodes have been visited. T is chosen uniformly
at random from the 0th − 99th percentile range of known
community sizes of a dataset. These subgraphs follow neither
the observed community size distribution, nor any embed-
ded structural patterns of communities. However, they can
overlap with a known community. We extract features for all
known communities and 10k random subgraphs in the Amazon
dataset, and present them in Figures 3(c) and 3(a).

Each row in Figures 3(c) and 3(a) represents a feature vector
of a known community subgraph and a random subgraph
respectively. That is, each row is like the color scaled feature



vector in Figure 2. Each column represents a labeled edge type.
The value in a cell represents the probability of that labeled
edge type in that subgraph. K-Means clustering is used to
cluster the feature vectors into 5 clusters. Known communities
and random subgraphs are clustered and ordered similarly for
ease of comparison. Different clusters are separated by a line.

We thus make the following observations:
• Certain types of feature vectors are more com-

mon in communities, while others are common in
random subgraphs. For example, feature vectors like
those seen in the first(top) cluster for communities are
over represented in random subgraphs, while those in
the last(bottom) one are underrepresented. Therefore, a
subgraph with a feature vector similar to the first cluster
is less likely to be a community, while one similar to the
last cluster is more likely to be a community.

• Patterns in community feature vectors change within
and across graph datasets. Clearly, more than one type
of pattern can be seen in the communities within one
graph dataset. In many clusters most of the edges are
of only a few edge types (color scaled as red), and they
change per cluster. This shows a clear and changing con-
nection or interaction bias between node labels. Similar
patterns are also observed in other datasets. This lends
weight to the idea of subtle information being embedded
in community structure, and dataset specific learning for
community detection.

• This approach can identify cliques without explicitly
trying to. Nodes in clique-like communities are likely to
have the same node label (say A) owing to them having
similar distributions of (very high) Jaccard similarity
scores. As a result the feature vectors of all clique-like
communities will contain a dominant edge type (A,A)
as most edges in it will connect nodes with the label A.

We now introduce some terms that we use throughout the
paper. We refer to the centroid of a cluster of community
feature vectors as a subgraph pattern SPi, and high proba-
bility edge types within a subgraph pattern as dominant edge
types. The support of SPi is the fraction communities that
are clustered together under SPi. The support of SPi in a
set of known communities, random subgraphs, or detected
communities is denoted by SuppK(SPi), SuppR(SPi), and
SuppC(SPi) respectively. Note that the centroid represented
by SPi does not change, only its support in each case.

D. Problem Statement

Our analysis till here shows that communities in different
datasets follow different size distributions, that some patterns
are more characteristic of communities (vs. random subgraphs)
and these patterns vary by dataset. Therefore a semi-supervised
community detection algorithm that builds upon a training set
of communities should extract subgraphs similar to the training
set in these aspects.

Consider a graph G(N,E), a set of known communities
K = {k1, k2, ..., kn}, and a function F (k) that represents a
community k in some feature space. Then, for each known

community ki ∈ K, we wish to extract a set of commu-
nities Ci = {ci,1, ci,2, ..., ci,m} which satisfy the following
constraints:

1) |Ci| ≈ m, ∀i ∈ [1...n]
2) minimize(||F (ci,j)− F (ki)||),∀ci,j ∈ Ci

3) minimize(|||ci,j | − |ki|||),∀ci,j ∈ Ci

These conditions ensure equal representation of each train-
ing community’s pattern in the extracted communities (con-
straint 1), as well as similarity between the training and
extracted communities in terms of feature patterns (constraint
2) and size (constraint 3).

Based on our observations in Section III-C, we rewrite
these constraints for a set of subgraph patterns SP =
{SP1, ..., SPn′}, and the feature space defined in Section
III-A. For each subgraph pattern SPi, we wish to find a
set of communities Ci = {ci,1, ci,2, ..., cim′} that satisfy the
following criteria:

min(||SuppC(SPi)− SuppK(SPi)||),∀i ∈ [1...n′] (1)

min(||F (ci,j)− F (SPi)||),∀ci,j ∈ Ci (2)

min(||pmf(sizes(Ci))− pmf(sizes(SPi))||) (3)

Where C is the set of all extracted communities, sizes
represents the size of communities in Ci or SPi, || − || is
some measure of dissimilarity depending on context (L1, KL-
divergence, etc.), and pmf is the probability mass function.

IV. METHOD: BESPOKE

Bespoke proceeds in the following manner: For a given
graph G, all nodes are assigned one of the Nl labels based
on their local topological features. Next, the training com-
munities are used to extract Np subgraph patterns. Once the
subgraph patterns have been extracted, all the nodes in G
are scored based on how closely their neighborhoods match
each subgraph pattern. This helps identify parts of the graph
where communities are more likely to occur. This score is then
used by an expansion algorithm to pick seed nodes, and grow
communities that match the size distribution of communities
in the training set.

Term Definition
Nl Number of node labels
Np Number of subgraph patterns
SPi A subgraph pattern
F (subgraph) Function to get feature vector for a subgraph
SuppX(SPi) Support for SPi in set of subgraphs X
DSPi

Community size distribution associated with SPi

ScoresSPi
Scores of all nodes under SPi

Nfind Number of communities to find
TABLE II

TABLE OF NOTATIONS
A. Training

1) Subgraph Patterns, and Size Information: Once the
nodes have been labeled (Section III-B), features for the
training communities are generated (Section III-A). The com-
munity features are then clustered using K-Means (K=Np). We
use each cluster center as subgraph pattern SPi. Each subgraph
pattern is associated with a distribution of community sizes
DSPi based on the communities in that cluster.



2) Scoring Nodes based on Subgraph Patterns: Each node
is assigned multiple scores, one for each subgraph pattern in
the training set. The closer the distribution of edge types in
its neighborhood is to a given subgraph pattern, the higher
its score for that subgraph pattern. Furthermore, the score is
biased towards subgraph patterns with dominant edge types as
they show a clear interaction/connection bias between roles.
Given a subgraph pattern SPi, the score of a node nj is
computed in two passes.

Pass 1: The node is scored based on the distribution of
edges connected to the node. If the subgraph pattern and
neighborhood of the node both have the same dominant edge
types, then the node get a higher score.

s′(nj , SPi) =

∑
nk∈NB(nj)

P (SPi, l(nj), l(nk))

deg(nj)

Where P (SPi, a, b) is the probability of edges of type (a, b)
in subgraph pattern SPi. NB(nj) is the set of nj’s neighbors,
and l(node) is the label of a node. The score’s range is [0,1].

Pass 2: The second pass adds to s′(nj , SPi) a degree
weighted average of its neighbors’ scores. This is similar to
heat or probability diffusion. Therefore the node’s final score
under SPi is:

s(nj , SPi) = s′(nj , SPi)+

∑
nk∈NB(nj)

s′(nk, SPi)deg(nk)∑
nk∈NB(nj)

deg(nk)

For Np subgraph patterns, each node will have Np different
scores. Instead of averaging the Np scores, each score is kept
and used separately. A node is used to grow communities for
only those patterns for which it is a good seed (s(nj , SPi) >=
th).

B. Community Extraction

The algorithm takes the following as input: A graph G, a
number of communities to find Nfind, the list of subgraph
patterns SP , their supports in known communities SuppK ,
community size distribution for each subgraph pattern DSP ,
and node scores ScoresSP that contains node scores under
each subgraph pattern.

The algorithm initializes Cfound to an empty list, and then
iteratively adds a community to it till Nfind communities have
been found. Each iteration starts by picking a subgraph pattern,
where probability of picking SPi is proportional to its support
in the training set(constraint 1). Next, the algorithm picks a
target size T for the community at random from Di. Di is the
size distribution of communities in SPi’s cluster (constraint 3).
A suitable seed node S is picked by the pick seed algorithm
based on T and Scoresi. With the seed and target size
determined, BFExpand uses a breadth first expansion to pick
T nodes for the community.

1) pick seed: The Seed Selection Algorithm: Algorithm 2
is used to search for a seed node with a high score, and
degree close to T from which to grow the community. Scoresi
contains information about the degree and score of each node
under SPi. The function find best seed starts by setting the

Algorithm 1 Community Detection
Input: G,Nfind, SP, SuppK , DSP , ScoresSP

Output: List of communities, Cfound

1: Cfound ← []
2: while len(Cfound) < Nfind do
3: SPi, Scoresi, Di = pick pat(SP, SuppK , ScoresSP ,

DSP )
4: T = pick target size(Di)
5: S = pick seed(T, Scoresi)
6: Cnew = BFExpand(S, T,G)
7: Cfound.append(Cnew)
8: end while

required degree for the seed node to be T−1. If nodes with that
degree are found in Scoresi, then the node with the highest
score is selected. If no node with that degree is found, the
algorithm searches for nodes with degree up to (T − 1) + ε,
where ε is a small value. If still no suitable seed node is found,
it returns null and a random node is picked as a seed.

2) BFExpand: Given a graph G, a seed node S, and a target
size T , BFExpand expands outward from S in a breadth
first manner till T unique nodes have been visited. The T
visited nodes are returned as the community grown from seed
S. Methods like simulated annealing or random walks can be
used to grow communities that match the features of SPi from
a seed. However, we found in our experiments that breadth first
expansion performed just as well, if not better, and faster than
other methods considered.

Algorithm 2 pick seed

Input: T, Scoresi
Output: Seed, S

1: S ← find best seed(T, Scoresi)
2: if S == null then
3: S ← pick random(Scoresi)
4: end if
5: pop(Scoresi, S)

V. EXPERIMENTS AND RESULTS

As noted in Section III-C, clique-like communities should
exhibit a distinct pattern in the feature space used by Bespoke,
and should be easily detected. We therefore generate synthetic
graphs (N∼10k, E∼100k) with 500 assortative communities
based on a stochastic block model(SBM) with community
sizes based on a power law distribution. We refer to this dataset
as SBM. This dataset is used as a sanity check for Bespoke’s
performance on graphs with clique like communities. We limit
our analysis of this dataset to quality of communities detected
(F1Score), while the real world datasets are used for further
examining Bespoke’s performance characteristics.

A. Community Detection Algorithms

BigClam and RCJoint: Modularity based community de-
tection algorithms [6], [7].



CESNA [3], which uses node-meta data and graph structure
for community detection. We run CESNA on the Twitter and
Facebook datasets as node meta-data is available for only those
two datasets.

ComE1, A community detection algorithm based on node
embeddings [8].

Must-link: A semi-supervised approach based on [9]. For
this approach, we run BigClam on graphs that have been
modified by adding extra edges between nodes in the same
community. These serve as additional constraints to the Big-
Clam algorithm in a fashion similar to that proposed in [9].
Results for this setup are referred to as “BCA” (BigClam-
Assisted) throughout the evaluation.

Random: A straw man baseline algorithm extracts random
subgraphs from a given graph. The sizes of the subgraphs are
pick uniformly at random in the range [0, 100].

Bespoke-SZ: A version of Bespoke where only commu-
nity size distribution information is used for detection. This
algorithm picks target community sizes (T ) based on sizes of
communities in a training set. The seed node is picked in a
way similar to Bespoke but based only on node degree. A
community is then grown from that seed using BFExpand.

Bespoke: We implement2 Bespoke using Python 2.7, and
open source python libraries [10]–[12]. The number of training
communities, Ntrain, is set to 100 for all datasets except for
Facebook and SBM, for which it is set to 20 as they have
only a few known communities (191 and 500 respectively).
The training set is chosen at random from the set of all
communities, and the remaining are used for evaluating its
performance. Nl and Np are fixed at 4 and 5 respectively for
all datasets. The quality of detected communities is computed
using F1Scores as described by Yang et al. [3].

All algorithms (except CESNA) are set to detect 1500 com-
munities for the Facebook and SBM dataset because of their
smaller size, and 50k for all other datasets. CESNA performed
best when the “auto” setting for number of communities to
detect was used, and the same is reported. The experiments
are repeated 20 times and the average F1Scores for each
algorithm on all datasets are reported in Table III.

B. Insights into Performance

We see from Table III that BigClam-Assisted (BCA) im-
proves over the performance of BigClam, as expected. How-
ever the improvement is often marginal. This is because the
guidance/additional edges added to a graph is not significant
in many cases. For example, in all datasets except Facebook,
Bespoke trained on communities that contained <0.5% of the
complete graph’s nodes and edges. This meant that BCA got a
small number of additional constraints in to work with, which
can explain the marginal gain in most cases. Additionally,
this guidance gets spread over thousands of communities.
The Facebook dataset is an exception, as it has fewer and
larger communities overall(Figure 1). This means that the 20

1https://github.com/andompesta/ComE
2https://github.com/abaxi/bespoke-icdm18

Method Amazon DBLP YT TW FB SBM
RCJoint 0.42 0.43 0.11 0.37 0.37 0.73
BigClam 0.40 0.41 0.13 0.31 0.32 0.65
BCA 0.42 0.43 0.13 0.32 0.38 0.64
ComE 0.40 0.38 – 0.23 0.27 0.67
CESNA – – – 0.34 0.36 –
Rand. 0.22 0.26 0.09 0.30 0.35 0.61
Bespoke-SZ 0.36 0.45 0.11 0.39 0.40 0.73
Bespoke 0.51 0.51 0.12 0.40 0.44 0.81

TABLE III
F1Scores OF COMMUNITIES DETECTED THE BY ALGORITHMS OVER THE
5 GRAPH DATASETS. META DATA FOR CESNA IS ONLY AVAILABLE FOR

FACEBOOK AND TWITTER DATASETS.

communities over which Bespoke trains on cover a significant
portion of the graph (∼15% of the nodes and edges). This
gives BCA a significant amount of guidance per community
for that dataset. The ComE algorithm at times performs worse
than the baseline random partitioning algorithm.

As seen in Table III, Bespoke outperforms all unsupervised
and semi-supervised approaches across all datasets except
BCA on YouTube. It even outperforms CESNA which uses
node meta-data. Finally, as expected, Bespoke performs well
on the SBM dataset which has clique-like communities.

Bespoke has significant gain over other approaches for the
Amazon and DBLP datasets, while not much for the YouTube
dataset. The reason lies partially in the difference in patterns
found in random subgraphs and communities in each dataset.
The more different the patterns are, the greater the gain.
Figures 3(c) and 3(a) show that the support for most subgraph
patterns is extremely different in known communities and ran-
dom subgraphs in the Amazon dataset. Similar trends are seen
in the DBLP dataset. However, the YouTube dataset presents a
lower degree of mismatch. We also observed that communities
in that dataset are star shaped and centered around high degree
nodes with (similarly labeled) low degree nodes as neighbors.
That makes identifying communities particularly challenging
for all methods.

The difference in the performance of the random parti-
tioner, Bespoke-SZ, and Bespoke is especially interesting as
the primary difference between these approaches is how the
community sizes and seed nodes are chosen. We see from the
F1scores that knowing the size distribution of communities
results in improvement over the random partitioner in all
cases. Further including structure/seed selection information
once again significantly increases the F1scores.

C. Patterns in Data

In Figure 3 we plot the features (Nl = 4, Np = 5) of
the known communities, randomly selected subgraphs, and
those extracted by BigClam, and Bespoke. Figure 3(c) shows
all known communities clustered into 5 patterns. Randomly
selected subgraphs do not show many of those patterns and
over represent others as seen in Figure 3(a). The patterns
seen in communities detected by BigClam in Figure 3(b)
resemble the ground truth more than the random subgraphs,
but many patterns are still under or over represented. Finally,
the communities detected by Bespoke show community feature
patterns that closely match those of the ground truth in
terms of support and similarity of features. This shows that



Bespoke minimizes the conditions outlined in Section III-D.
Consequently, it also has the highest F1Score.

Features/Edge Types

Ra
nd

om
 S

ub
gr

ap
hs

(a) Random Subgraphs

Features/Edge Types

Bi
gC

la
m

 C
om

m
un

iti
es

(b) BigClam

Features/Edge Types

Kn
ow

n 
Co

m
m

un
iti

es

(c) Known Communities

Features/Edge Types

Be
sp

ok
e 

Co
m

m
un

iti
es

(d) Bespoke
Fig. 3. Patterns in random subgraphs, known communities, and communities
extracted by various algorithms for the Amazon dataset.

VI. RELATED WORK

Constraint based community detection approaches incor-
porate the must/must-not link constraint in to an adjacency
matrix [1], [9]. It adds weights between nodes that are known
to be in the same community, and then performs non-negative
matrix factorization to get communities. These works take
as input the local must-link/must-not-link constraints and
penalties. In contrast, our approach can finds patterns in known
communities that can be generalized over the whole graph.

In some cases metadata about the nodes or edges in a graph
is available, which can be helpful for community detection.
Yang et al. propose CESNA, which follows the idea that
connected nodes with similar attributes are more likely to be
in the same community [3]. The work presented here does not
rely on metadata, and aims to learn patterns in communities
that go beyond clustering nodes with similar metadata.

Node and graph embeddings have been used for problems
like multi-label classification, and community detection [8],
[13]. For example, ComE [8] generates node embeddings,
community embeddings, and identifies communities in a joint

optimization process. Most such techniques cluster the node
embeddings in order to form communities. Although the
embeddings take local features into account, nodes in different
parts of the graph can be in the same community. This leads
to poor detection accuracy as seen in Table III which shows
ComE performing worse than the random algorithm.

VII. CONCLUSION

In this paper we have presented a new way to look at
the problem of community detection, one that leverages size
and structural information of known communities. We defined
concise and meaningful ways to model the structure and size
distribution of communities, and demonstrate that patterns in
communities clearly differ from those in random subgraphs
in our model’s feature space. We also presented a way to
easily incorporate these patterns into a community detection
algorithm. Our results show that information extracted from
a small set of known communities can help exceed the
performance of sophisticated modularity based approaches in
terms of runtime and quality of communities extracted.

REFERENCES

[1] E. Eaton and R. Mansbach, “A spin-glass model for semi-supervised
community detection.” in AAAI. Citeseer, 2012.

[2] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in
networks: Structural communities versus ground truth,” Physical Review
E, 2014.

[3] J. Yang, J. McAuley, and J. Leskovec, “Community detection in net-
works with node attributes,” in Data mining (ICDM), 2013 ieee 13th
international conference on. IEEE, 2013.

[4] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[5] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu,
L. Akoglu, D. Koutra, C. Faloutsos, and L. Li, “Rolx: structural role
extraction & mining in large graphs,” in Proceedings of the 18th ACM
SIGKDD. ACM, 2012.

[6] J. Yang and J. Leskovec, “Overlapping community detection at scale: a
nonnegative matrix factorization approach,” in Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, 2013.

[7] Y. Ruan and S. Parthasarathy, “Simultaneous detection of communities
and roles from large networks,” in Proceedings of the second ACM
conference on Online social networks. ACM, 2014.

[8] S. Cavallari, V. W. Zheng, H. Cai, K. C.-C. Chang, and E. Cambria,
“Learning community embedding with community detection and node
embedding on graphs,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. ACM, 2017.

[9] Z.-Y. Zhang, “Community structure detection in complex networks with
partial background information,” EPL (Europhysics Letters), 2013.

[10] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[11] E. Jones, T. Oliphant, and P. Peterson, “{SciPy}: open source scientific
tools for {Python},” 2014.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[13] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

http://snap.stanford.edu/data

